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Nonequilibrium Molecular Dynamics of 
Liquid Crystals 

S. S. S a r m a n ,  2 4 p.  T.  C u m m i n g s ,  -~ 5 and D.  J.  Evans  ~' 

During the last 15 years, noncquilibrium molecular dynamics (NEMD) has 
been successfully applied to study transport phenomena in fluids that are 
isotropic at equilibrium. A natural extension is therefore to study liquid crystals, 
which are anisotropic at equilibrium. Tile lower symmetry of these systems 
means that the linear transport coefficients are considerably more complicated 
than in an isotropic system. Part of the reason for this is that there are cross- 
couplings between tensors of different rank and parity. Such couplings are 
symmetry-forbidden in isotropic phases. In this paper, we review some of 
fundamental theoretical results we have derived concerning the rheology of 
liquid crystals, report NEMD simulations of thermal conductivity and shear 
viscosity of liquid crystals, and present NEMD simulations of shear cessation 
phenomena. All of thc NEMD results arc presented for a model liquid crystal 
fluid which is a modification of the Gay-Berne fluid. The results obtained arc 
in qualitative agreement with experimental measurements on liquid crystal 
systems. 
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i. INTR ODUC TION 

Transport properties of axially symmetric systems such as nematic liquid 
crystals are considerably more complicated than those of isotropic fluids. 
The thermal conductivity and the diffusion coefficient are second-rank 
tensors with two independent components. This anisotropy causes the 
director to align relative to a concentration or temperature gradient [-1]. 
The viscosity is a fourth-rank tensor with seven independent components. 
Cross-couplings that are symmetry-forbidden in isotropic fluids are per- 
mitted in anisotropic fluids. In particular, one has a cross-coupling between 
the symmetric part of the strain rate and the antisymmetric part of the 
pressure tensor, and vice versa. This cross-coupling is responsible for 
alignment phenomena in liquid crystal flows. 

Transport coefficients can be obtained either from the appropriate 
Green-Kubo relation, evaluated by conventional equilibrium molecular 
dynamics tEMD),  or by nonequilibrium molecular dynamics (NEMD) 
methods [2].  In the latter case the system is coupled to a fictitious 
mechanical field. The field generates irreversible thermodynamic currents. 
The analytical expression for the field is chosen in such a way that the 
currents become the same as the ones induced by real Navier-Stokes 
forces. These forces include temperature, chemical potential, and velocity 
gradients. The transport coefficient in question is obtained as the ratio of 
the current to the field in the limit of zero field. The NEMD method also 
makes it possible to study how the thermodynamic currents affect the 
structure of the fluid. One can also study phenomena that occur far from 
equilibrium. One such phenomenon is shear cessation. If an isotropic fluid 
consisting of elongated molecules is subject to a high strain rate, a liquid- 
crystal-like phase will be induced. If the strain field is abruptly turned off, 
the shear stress will not immediately go to zero. There will be a residual 
stress that decays as the shear-induced liquid crystal phase reverts to the 
equilibrium isotropic phase. 

111 liquid crystals, many properties are best expressed relative to a 
director-based coordinate system. This is not a problem in the thermo- 
dynamic limit because in this case the director is virtually fixed. In a small 
system, such as a computer simulation cell, the director slowly diffuses on 
the unit sphere. In this case a director-based coordinate system is no longer 
an inertial frame. The drift of the director may also affect long-ranged time 
correlation functions and their time integrals, thus rendering the transport 
coefficients obtained from them incorrect. This problem can be solved by 
using a Gaussian constraint algorithm that fixes the orientation of the 
director. This technique has been successfully applied to the evaluation of 
the thermal conductivity of a nematic phase of the Gay-Berne fluid [ 1, 3]. 
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The purpose of this paper is to demonstrate how various EMD and 
NEMD algorithms developed for isotropic fluids can be generalized to 
study transport properties of liquid crystals. The paper is organised as 
follows. In Section 2, we describe the model system. In Section 3, we review 
wlrious NEMD algorithms and briefly discuss results obtained from them. 
Section 4 contains our conclusions. 

2. M O D E L  S Y S T E M  

In most of the calculations reported in this article we have employed 
the Gay-Berne (GBI potential [3].  It can be regarded as a Lennard-Jones 
potential generalized to elliptical molecular cores. It has been shown to 
exhibit both nematic and smectic phases as well as ordinary isotropic 
phases [4].  The attractive part of the potential requires long cutoff radii in 
order to yield correct pressures, thus increasing the computation time. 
Therefore, we have chosen a purely repulsive variant of the GB potential, 

E i]" U(r:_,, f , ,  f i , )=  4~:(~1e, fi,, f,) a,, 
- r12-a(~12, fi,,¢',_)+o, 

(I) 

where r~e is the distance vector from the center of mass of molecule 1 to the 
center of mass of molecule 2, ~,e is the unit vector in the direction of r,e, 
r~2 is tile length of rte, and 6~ and fi2 are the unit vectors parallel to the 
axes of revolution. The parameter 0% is of the length of the axis perpen- 
dicular to the axis of revolution. This is the minor axis of prolate ellipsoids 
and the major axis of oblate ellipsoids. The strength and range parameters 
~:(r,2, 61, fiz) and c*(fj2, 61, fie) are given by 

~:(rle, f l ,  U2): /:(/[- I - - Z 2 ( f l '  Ue)2"[ 1 2 

x 1 - -7 [_  I + z ' f i , . f i ,  -~ (2) _ . _ I - -Z  ill 'fie d)  

and 

{ a(~le, f , , f e )=a, ,  1--~e f + z f i , ' 6 2  ~- I - z f i , ' f i 2  l J  

(3) 

The parameter Z=O, 2 -  1)/(t¢2+ 1), where ~, is the ratio of the axis of 
revolution and the axis perpendicular to the axis of revolution and 
Z,=(i.,~ 2_  l)/(j.,~ 2+1) ,  where J," is the ratio of the potential energy 
minima of the side-to-side and the end-to-end configurations. The depth of 
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the potential minimum is given by ~:~,. Note that we use purely repulsive 
potentials, so there arc no potential minima. However. we keep the values 
of ic'. 7.'. and ~:. used by previous authors [4].  

We have been concerned with mainly prolate ellipsoids. The simula- 
tions were performed with 256 molecules with parameters K = 3 and I,"= 5. 
The cutoff radius beyond which the interaction forces and energies are zero 
is 1.5d(f~z, fi~. fi2) and is thus orientation dependent. The reduced tem- 
peratures and densities, k~ T,..q, and nail,, have been set equal to 1.00 and 
0.300. respectively. The whole k u T / ~ : , , =  1.00 isotherm can be found in 
Ref. 5. At low densities the fluid is isotropic. At approximately na~ = 0.27 
there is a transition to a nematic phase. 

The numerical results are expressed in length, time, and energy units 
of a . .  r = d . (m . '~ : . l  ~ 2. and ~:.. respectively. The moments of inertia around 
the two axes perpendicular to the axis of revolution have both been given 
the value l=ma~,,  i.e.. unity in reduced units. The equations of motion 
have been integrated by a fourth-order Gear predictor-corrector method 
with a time step of 0.001 r and Lee's Edwards" sliding-brick boundary con- 
ditions in the case of shear flow and with octahedral boundary conditions 
otherwise. Expressions for the forces and torques are given in Ref. 6. 

3. T H E O R Y  

The degree of ordering in a liquid crystal is given by the scalar order 
parameter S.  which is the largest eigenvalue of the symmetric traceless 
order tensor Q given by 

3i , ,] Q = ~  ~ f i ,6 , -  3 1 (4) 

whcre I is the unit second-rank tensor. When tile molecules are perfectly 
aligned, the order pararneter is unity, and when the orientation is random 
the order parameter is zero. The unit eigenvector corresponding to the 
largest eigenvalue is called the director, n. It is a measure of the average 
orientation of the system. 

3.1.  T h e r m a l  C o n d u c t i v i t y  

In an axially symmetric system the thermal conductivity tensor is a 
second-rank tensor with two independent components relating the heat 
flow and the temperature gradient: ~-ii ii parallel to the director and 21± 
perpendicular to the director. The generalised Fourier's law is given by 

< J ~ ) >  = - [';-II Ir n m  + 2 ±  ~.(I - -  n m ) ]  • V T  ( 5 )  
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where < J o )  is the macroscopic  heat flux vector and T is the absolute tem- 
perature. It is assumed that the whole system remains in the same phase. 
The en t ropy  product ion per unit volume and time, ,7. due to heat conduc- 
tion is 

< J g > . V T  I [ ) - . _ I V T ' V T + ( ) - H t l - ; - I ± ) ( n ' V T ) ' - ]  (6) 
r~ - T 2 T :  

Note that  (7 is or ienta t ion-dependent  in anisotropic system. If 2 H H >) -+1 ,  
the en t ropy  product ion is minimal when the director is perpendicular  to 
the tempera ture  gradient. If )-II II < )-!±. a parallel orientat ion minimises a. 
It is s t ra ightforward to derive Green K u b o  relations for the thermal 
conductivity,  

J 

)'"-kt~T'-I'" .. dt<Jq),(t)Jo~(O)). [7) 

where k ,  is Bol tzmann 's  constant,  I." is the volume, J().~(t)is the heat flux 
vector in the z~-direction, and ~ = II or I .  The current Jo ( t}  is resolved in 
componen t s  parallel to the director. Jol l( t  } = J o ( t  ). nm. and perpendicular  
to the director. Jo,(t)=JQ(t)-Joll( t) .  

The thermal  conductivi ty can also be obtained by a generalization of 
the Evans heat flow algori thm to molecular  fluids I-7]. The heat flux vector 
for a fluid consisting of rigid molecules is 

±) I p~ + o)p, .  Ip • O)p, + ~ ,  
I,"J q~ = '~  m 

- - t = l  I = 1  

---2,=1 :1 r# ,m 'F#+° )P " rP#  (8) 

where ill is the molecular  mass and p~ is the momentum.  The principal 
angular  velocity and inertia tensor are ~')m and Ip: hence the subscript p. 
The force and principal torque on particle i due to particle./ '  are F,, and 
Fpi ,. A synthetic heat flow algori thm is 

i ' i= p~ (9) 
DI 

( ' ± )  I ~ i = F i +  S i - ~ i = j S ,  .F,~- 

.%. 

lo)vi = r p i -  -~ , 2  I= rp,,r,, - F o 

~.p, (101  

( l l )  
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where r~ is the position of particle i, F o is the heat field, and 

S, =F  \ m  + c%i- lv . l%i+  O# ruF u (12) 
-- i=I "i=I 

The omitted equation relating df i , . /d t  and ~,~ is expressed in terms of 
quarternions [8].  The multiplier ~. is determined by requiring that the 
translation kinetic energy should be a constant of motion [I ]. From these 
euqations of motion and linear response theory, one gets the following 
expression for the thermal conductivity: 

,;.~= lira M ~ ( F Q ) =  lira lim ( J ° ~ ( t ) )  (13) 
I'b .o t'b ~ o  ~ • ~ TFQ:~ 

This algorithm has been applied to calculate the thermal conductivity of 
various phases of the Gay Berne fluid. In general, not unexpectedly, one 
can say that the thermal conductivity is about two or three times as large 
in the parallel direction as in the perpendicular direction in a prolate 
ellipsoid fluid. The reverse is true for oblate ellipsoids. Equilibrium 
Green Kubo methods and NEMD algorithms give consistent results. An 
interesting phenomenon that occurs in liquid crystals subject to heat flow 
is that there is a preferred orientation of the director relative to the tem- 
perature gradient. In a nematic liquid crystal consisting of prolate ellipsoids, 
2, ~ > ). ±: and the director prefers to be perpendicular to the temperature 
gradient. In a fluid consisting of oblate ellipsoids, 21ill < ; ' . ~ ± ,  and the 
director prefers the parallel orientation. This behavior can be rationalized 
by analyzing the expression for the entropy production, Eq. 6. In both 
cases the director alignment minimizes the dissipation [1].  

3.2. Director Constraint Algorithm 

Many properties are best expressed relative to a director-based coordinate 
system. This is not a problem in the thermodynamic limit because in an 
infinite system the director is virtually fixed. However, in a small system such 
as a simulation cell. the director is slowly diffusing on the unit sphere. This 
rneans that a director-based coordinate system is no longer an inertial frame. 
The tails of the time correlation functions will also be affected by the rota- 
tional diffusion of the director. The transport coefficients obtained from the 
correlation functions will thus be incorrect. We solve this problem by augment- 
ing the equations for the angular accelerations by two constraint torques [ 1 ], 

I ( o , =  F ~ +  I ) . , . - : - =  + I2, .  ~ - (14) 
( . 0 3  i - C(.O i 
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where .Q.,. and I2.,. are two components of the angular velocity of the 
director. It is possible to find expressions for the multipliers ).,. and 2.,. in 
terms of phase variables in such a way that the director becomes fixed. 
However, these expressions are very complicated and are omitted. Once 
can show that these constraint equations do not cause any additional 
dissipation when the director is fixed. This makes it possible to prove 
rigorously that the constraint equations do not affect ensemble averages of 
phase functions or time correlation functions. 

Numerical tests of this algorithm have shown that it works very well. 
If one constrains the director to point in the z-direction (i.e., n.. = 1 ), n,. and 
n,. never exceed 10 ~. The dissipation induced by the constraint torques, 
which should be exactly zero, never exceeds 10 -7 in reduced units. This 
algorithm is consequently a very powerful tool to use in liquid-crystal 
simulations. 

3.3. Newtonian Shear Flow 

Another important nonequilibrium system is a fluid subject to a 
Couette strain field. This system can be exactly modeled by applying the 
isokinetics SLLOD [2]  equations of motion for a molecular fluid 1-11], 

f~ = P_2 + e,. 7y~ ( 15a ) 
Ill 

[! = F i - e x T p y  i - ~ P i  (15b) 

where e.,. is the unit vector in the x direction and 7=  c~u,./c'~y is the velocity 
gradient. If the Reynolds number is low, the streaming velocity at the 
center of mass of particle i is 7Yi, so the peculiar velocity of the center of 
mass of the particle is pflm. The Gaussian multiplier ~ is determined by 
making the peculiar kinetic energy a constant of motion, 

~.~ N 

~= [Fi.p,-Tp,.,p,.i]/ ~ P~ 
i =  I " l i =  1 

(16) 

Note that this thermostat does not exert any torque on the molecules 
or the director and it consequently does not affect the shear-induced 
alignment. 

The viscosity of a nematic liquid crystal is a fourth-rank tensor with 
seven independent components. The definitions and the Green-Kubo rela- 
tions for these elements are straightforward byt very tedious to define and 
are reported elsewhere 1:12]. However, one often defines three effective 
viscosities, the Miesowicz viscosities [9],  (p.,..,.)=l/iS', with the director 

$40 15 6-~ 
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Fig. I. Definitions of the Miesowicz viscosities. We assume that the 
stream lines are parallel to the e, direction and the velocity varies 
linearly in the e, direction. The shcar plane is defined as the .v.v plane. 
The viscosity coefficient Pl~ is the ratio - ( p , , ) , ' ; .  when the director 
is parallel to the stream lines: ~l_, is this ratio when the director is 
perpendicular to the stream lincs and lies in the shcar plane. Finally, 
~13 is the effective viscosity when the director is perpendicular to the 
stream lines and normal to the shear plane. 

oriented in turn in the x ,  .r, and _ directions; see Fig. 1. In experimental 
measurements the director is oriented by applying a magnetic field. In com- 
puter simulations of liquid-crystal model systems, it is very convenient to 
use our director-constraint  method. We can fix the director in any direction 
and calculate the shear stress. 

We have calculated the Miesowicz viscosities for two reduced strain 
rates, 0.02 and 0.04. The results are shown in Table I. As one can see, tl_, 
is much larger than ~13, which is larger than ~1,. Similar ratios of the 
Miesowicz viscosities have been found experimentally. It is easy to realize 
that q~ must be the smallest viscosity, because when the prolate molecules 
are parallel to the stream lines the molecule can slide past each other very 
easily. 

T a b l e  I. The Miesowicz Viscosities as Functions of 
the Strain Rate 

7 tl i tl -" ~13 

002 0.86+0.1 15.0+0.1 2.62+0.1 
0.04 0.87+0.1 14.4+0.1 2.58_+0.02 
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3.4. Nonlinear Flow Phenomena 

So far we have dealt mostly with linear transport  processes, i.e., where 
there is a linear relation between thermodynamic  forces and fluxes. 
However,  there is a wide range of interesting nonlinear flow phenomena in 
liquid crystals. One of them is shear-induced ordering. If a fluid consisting 
of rod-like molecules is subject to a weak Couette  strain field, the mole- 
cules will be aligned. In the linear regime the alignment angle is equal to 
45 ~ relative to the stream lines. The order parameter  is proport ional  to the 
strain rate, so if the strain rate is not  very high, the fluid remains isotropic. 
As the strain rate increases the order parameter  increases and one breaks 
the symmetry of the system. One can consequently turn an isotropic fluid 
consisting of elongated molecules into a nematic liquid crystal by applying 
a strong strain rate. This is a well-known phenomenon  and it has been 
observed in a wide variety of liquid model systems such as diatomics, the 
Gay-Berne  fluid, and various alkane models [ 10]. 

When the strain rate is high enough the linear relation between the 
pressure tensor and the strain rate breaks down. The fluid consequently 
becomes non-Newtonian.  One manifestation of this is that the stress response 
to the strain rate is no longer instantaneous. If the strain rate changes, the 
pressure tensor will not be proport ional  to the strain rate, as it is in the New- 
tonian regime. If there is a step increase in the strain rate, there will be stress 

0.00 

-0.10 

~" 0 20 ¢1., 

-0.30 

i I i l 

T7  
• i l l .  . .  i - .  i 

, ". "~'c::~<<::- ..,. ~. z - ~ " " " - ~z:~i ~- 

-0.40 , i , i , i , t , 

0.00 0.10 0.20 0.30 0.40 0.50 
t/'~ 

Fig. 2. The transient response of P,~, the yx component of the pressure 
tensor, as a function of time immediately following shear cessation. That is. 
7* = 7al){m/%} t 2= 1.00 for t<0  and ?*=0 for t>0. 

- i  
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overshoot. If the strain rate is abruptly turned off (shear cessation), the shear 
stress does not immediately go to zero as it would for a Newtonian fluid. We 
have studied how a Gay-Berne fluid behaves when a strong strain rate is instan- 
taneously turned off. The results are shown in Fig. 2. As one can see there are 
two relaxation times. The first one is due to relaxation of the strain immediately 
following the cessation of the strain rate. This relaxation is very fast, almost- 
instantaneous as is seen in liquid-crystal solutions in a Newtonian solvent [ 13 ]. 
The second relaxation time is much longer than the first one and corresponds 
to the slow relaxation as the nematic phase, which is no longer stabilized by the 
strain field, breaks up and becomes isotropic. During this time there is some 
residual stress that decays to zero as the order parameter goes to zero. 

4. C O N C L U S I O N S  

We have illustrated some of the peculiarities of the Newtonian and 
non-Newtonian rheology of liquid crystals and have demonstrated that 
equilibrium and nonequilibrium molecular dynamics simulations provide 
convenient and powerful methods for studying the molecular basis for 
liquid-crystalline behavior. 
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